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Comments on Gruber's algorithm. By G. M. WOLTEN, Aerospace Corporation Laboratories, El Segundo, California, 

U .S .A .  
(Received 20 August 1971 ) 

Gruber's algorithm [Gruber, B. (1970) Acta Cryst. A26, 622] for determining the symmetry and stacking 
properties of Bravais-lattice planes can be applied to problems in reciprocal space. 

Gruber (1970) has published an interesting algorithm for 
determining the symmetry and stacking properties of 
Bravais-lattice planes. 

It would seem that the algorithm can be applied to prob- 
lems in reciprocal space as well, with useful results as 
follows. The normal to the direct lattice plane (hkl) is the 
reciprocal axis [hkl]*. From reciprocity, it follows that the 
normal to the reciprocal lattice plane (uvw)* is the direct 
space zone axis [uvw]. Thus, by supplying uvw instead of 
hkl, and reciprocal lattice parameters instead of direct ones 
the algorithm will determine the size and shape of recip- 

rocal lattice planes as seen on precession photographs or 
on thin-crystal electron diffraction patterns. 

The second of the worked-out examples in Gruber 's 
paper contains a misprint. In the value for t3, the ratio 2, 
should read ~-. 

The author has programmed the algorithm in Fortran. 
Copies of the program may be obtained upon request. 

Reference 

GRUBER, B. (1970). Acta Cryst. A26, 622. 

Acta Cryst. (1972). A28, 213 

The.  s tandard  dev ia t ion  o f  the  tors ion  angle .  By R. H. STANFORD JR and Ji3RG WASER,  Gates and Crellin Labora- 
tories of Chemistry,* California Institute of Technology, Pasadena, California 91109, U.S.A. 

(Received 12 May 1971) 

Formulas are derived for calculating a torsion angle and its standard deviation. The positions of the four 
atoms defining the torsion angle are assumed to be uncorrelated and the positional standard deviations are 
assumed to be isotropic. 

Given a sequence of four (usually bonded) atoms, 1, 2, 3, 
and 4, whose positions are uncorrelated, and the isotropic 
standard deviations of their positions, formulas are derived 
for the torsion angle about the line between atoms 2 and 3 
and its standard deviation. 

The position of each atom can be represented by: 

r ,=x, i+y, , j+z ,k  (n= 1, 2, 3 or 4) ,  (1) 

where x,, y,, z, are the orthogonalized coordinates of atom 
n, and i, j, and k are the usual Cartesian unit vectors. The 
variances of the atomic positions are assumed to be iso- 
tropic, that is 

0"2(Xn) = 0"2(yn) ---- O"2(Zt,) : 0"~. (2)  

* Contribution No. 4243 from the Gates and Crellin 
Laboratories of Chemistry. This investigation was supported 
in part by Research Grant No. GB-6617 from the National 
Science Foundation, and in part by Public Health Service 
Research Grant No. 12121 from the National Institute of 
General Medical Sciences. 

Define the interatomic vectors: 

r m n = r n - - r m .  (3) 

Then, a vector normal to the plane defined by atoms 1, 2, 
and 3 is: 

tl = r21 x r23, (4) 

and a vector normal to the plane defined by atoms 2, 3, 
and 4 is: 

t2 = r32 × r34.  (5)  

The angle between these normals is the torsion angle, z, 
about the line between atoms 2 and 3, and 

cos T= tx. t2/tlt2. (6) 

(The conventional sign of r is discussed later.) 

Substitution of (1) and (3) into (4) and (5) yields: 

t~= ad + btj + czk ( l= 1 or 2) ,  (7) 

where the coefficients a~, bz, cz are given under '.general co- 
ordinates' in Table 1, 
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Table 1. Components o f  the vector normals & the general and 
special coordinate systems 

General coordinates Special 
coordinates 

al yl(  Z3-- Z2)+ Y2( Zl-- Z3)+ Y3( Z2-- Zl) ]Fig 3 
bl Xl( Z2 -- Z3) + X2( Z3 -- Z1) + X3( Zl -- Z2) 0 
Cl Xl(Y3 --Y2) + x2(Yl --Y3) + x3(Y2--Yl) 0 
a2 Y2( 24 -- z3) + Y3( z2 -- z4) -[- Y4( z3 -- z2) Y4Z3 
b2 X2( Z3 -- 2"4) + X3( Z4 -- Z2) -Jr- X4( Z2 -- Z3) -- X4Z3 
C2 x2(Y4 --Y3) + x3(Y2 --Y4) + x4(Y3 --Y2) 0 

or  

Substituting h and t2 from (7) into (6) gives: 

ala2 + blb2 + cic2 
cos r = (8) 

ht2 

- t ( ala2 + b~b2 + c~c2 
ttt2 ) . (8') 17:1 COS 

The variance of 7: is then given by 

1 
a 2(7:) = -~T}--r a2 (cos r ) ,  (9) 

where 
O(cos 7:) O(cos 7:) 

o'2(cos z)= ~ ~ Oqt 8qj coy (q .q j ) .  (10) 

The quantities q~ and qj represent the parameters x., y,,, 
and z. (n = 1 to 4) and coy (q .  q j) is the covariance of q~ and 
q:. It has been our experience that with good three-dimen- 
sional data the covariance matrix of each atom is usually, 
for all practical purposes, isotropic [i.e. in a Cartesian sys- 
tem the matrix is diagonal and of the form (2)]. Moreover, 
there are seldom significant correlations among different 
atoms, unless they are related by symmetry, which case we 
exclude here. If  we, therefore, assume that the parameters 
are independent, 

cov (qt, q j) = 0 q~ # qj a2(qt) qi=qg 

and (10) reduces to: 
( a(cos 7:) 

G2(COST)= i-E ~---aq---~---I a2(q3" (11) 

Multiplication of (8) by fit2, taking partial derivatives, and 
rearranging yields: 

6~(C0S Z') Oa2 ~al Oh2 
ht2 - - - @ T  - a l  ~ +az ~ +b, 8qm 

Ob, 3c2 3c~ 
+ b2 ~ +cl ~ + c2 aqm 

( at2 6q/ l)  
--COST tl ~ + t 2 ~ q  m , (12) 

where 
t,=(a~ + b~ + c/2) 1/2 (13) 

and 
St, 1 ( cqa, cqbz ~cz / (14) 
Oq~ - h a,~-4£ + b ' ~  +c'  Oq,,/ " 

The final expressions can be simplified by choosing a special 
right-handed coordinate system to bring atom 2 to the 
origin, atom 3 to the k axis, and atom 1 into the plane of  
j and k, choosing the directions of j and k so as to make Y, 
and Z3 positive. The new coordinates then become: 

X,=O,  YI>O, Zx 
X2.-= Y2= Z2= O 

X3= Y3--~O, Z3>O 

X4, Y4, Z4 • 

The coefficients a,, a2 . . . .  in (7) for this new set of axes are 
also given in Table 1. The derivatives appearing in (12) and 
(14) are shown in matrix form in Table 2 for the special co- 
ordinate system. Note that some of the derivatives are not 
zero, even though they would have vanished if straightfor- 
ward derivatives of the expressions for a~, a2 . . . .  in the 
special coordinate system (see Table 1) had been taken. In 
other words, the complete expressions involving the sym- 
bolic coordinates must be retained during differentiation. 

Table 2. Derivatives o f  the components in the special co- 
ordinate system of  the normal vectors which appear in equa- 

tions (12) and (14) 

Oal/ Obl/ OCl/ Oa2/ 6332/ Oc2/ 
/~x~ 0 - z3  0 0 0 0 
/O Y~ z3  0 0 0 0 0 
/OZI 0 0 0 0 0 0 
/OX2 0 Z3 -- Z1 ]I1 0 Z3 -- Z4 ]"4 
/OY2 Z1--Z3 0 - X l  Z 4 - Z 3  0 - X 4  
/OZ2 -- Y1 0 0 -- Y4 X4 0 
/OX 3 0 Zl - Y, 0 Z4 - II4 
laY3 - -Z ,  0 Xl --Z4 0 X4 
/OZ3 ]I1 0 0 Y4 - X4 0 
/OX4 0 0 0 0 - Z 3 0 
/0 Y4 0 0 0 Z3 0 0 
/OZ4 0 0 0 0 0 0 

Finally, equation (9) takes the form: 

a~ a~ [ ( z 3 -  zl)  2 
O'2(T) = ~ } -  "JI- -a~- y2 

2 (Z  3 - - Z l )  (Z  3 - Z 4 )  cos r 
Yl(X2 + YDXn 

a 2 [ Z 2 2Z, Z4 cos 7: 
+ Z----~3 [ y2 rl(x 2-F Y2) U2 

z~ ] o~, 
(X~ + Y~) + (X 2 + Y?,) " 

(Z3 - Z 4 )  2 ] 
(x ,  ~ + YD J 

+ (15) Fig. 1. Right-handed coordinate system. 
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Fig. 1 shows that the various coordinates in (15) can be 
replaced as follows: 

Yt = r12 sin ~0~ Z1 = rx2 cos (0x 
Z3 = r23 Z4 =/'*23 --/'34 COS (/92 

( X 2 +  y]) l /2  = r34 sin ~02, 

where r,,, is the distance between atoms m and n. Equation 
(15) for the variance of the torsion angle, z, then becomes: 

o2 [( ) O.2(~. ) = . O" ] -t- - -  r23 -- r12 COS (01 2 
rx2 sin 2 ~ot r23 r12 sign ~0~ 

- - 2 (  r23- rl2 cOs tpl ) ] 
_ cot (02 COS "c + cot 2 q72 

r12 sin ~t 

+ ~-[r232 cot 2 ~at-- 2 ( r23--r34 c°s ~2 ) cOt ~1 cOS " c r 3 4  sin" ~2 

+ (r2  r 4cos 2) ] 
_ + (16) 

r34 sin ~P2 r3,~ sin 2 ~P2 

Use of the special coordinates in (8') leads to the torsion 
angle: 

I14 
Irl = c ° s - 1  (X2+ y 2 ) 1 / 2  • (17) 

The convention of the 'right-hand rule' (Klyne & Prelog, 
1960) is used to fix the sign of ~:. In order to determine the 

sign, in a right-handed system with Y1 > 0 and Z3 > 0, it is 
necessary only to examine X4. The sign of z is the sign of 
- X 4 .  

For the purpose of programming a computer to calculate 
the standard deviation of the torsion angle, equation (15) 
seems most appropriate. If, however, the six structural par- 
ameters are known, then equation (16) would be more 
suitable. 

The function-and-error program of Busing & Levy (1961) 
included a provision for calculating the dihedral angle and 
its standard error for two planes each defined by three 
atoms. The torsion-angle calculation is a special case in 
which two atoms are common to both planes. In this pro- 
gram the standard error is calculated from the full covari- 
ance matrix, and the necessary derivatives are evaluated by 
numerical differentiation. 

We thank Dr Richard E. Marsh for valuable discussions 
and the referee for many helpful comments. 
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Normal probability plot analysis of small samples.* By W A L T E R  C. HAMILTON, Chemistry Department, Brook- 
haven National Laboratory, Upton, New York, U.S.A. find S. C. ABRAHAMS, Bell Telephone Laboratories, Incorporated, 
Murray Hill, New Jersey, U.S.A. 

(Received 20 August 1971) 

In using normal probability plots for comparing two sets of crystallographic data [Abrahams, S. C. & 
Keve, E. T. (1971), Acta Cryst. A27, 157] note should be taken of the fact that the expected values of normal 
order statistics are not given exactly by the percentage points of the normal distribution. This becomes an 
important consideration only for small samples. Tables of expected ranked exact moduli of normal observa- 
tions, for sample sizes to 41, are presented: these are useful for half-normal probability plots. 

Differences between independent measurements or cal- 
culated values of the same ith crystallographic quantity, 
At = F(1)~ - F(2)t, are readily analyzed by the normal prob- 
ability plot method (Abrahams & Keve, 1971) in terms of 
the pooled standard deviation a t =  [o'2F(1)t÷ o'2F(2)1] 1/2. A 
plot of the j ranked values of the weighted deviations 
A&h (where i=  1 refers to the largest AJch) against the 
expected values ~(iIj) should result in a scatter of points 
about a straight line of unit slope that passes through the 
origin. If the weighted deviations are drawn from a normal 
distribution, a reasonable assumption for a crystallographic 
experiment, then the expected values for large j are given 
approximately by the percentage points Xt of the normal 
distribution, with 

tfx, exp ( - a212) da = I (J -  2 i+  1)/jl (1) e (x , )=  V~ -xi  

* Research performed in part under the auspices of the 
U.S. Atomic Energy Commission. 

For  small values of j ,  especially for j <  50, the deviations 
between the values given by equation (1) and the exact 
values as tabulated by Harter (1961) become appreciable, 
especially at the extremes of the array. Four examples are 
given in Table 1. The exact values should always be used 
for small samples. 

If  the sign of At is without significance, as in comparison 
of two sets of position parameters, the half-normal proba- 
bility plot should be used (Abrahams & Keve, 1971). For  
large samples, the expected values may again be obtained 
from the percentage points of the normal distribution, 
with P(Xt) = ( 2 j -  2 i+  1)/2j.t F o r j  small, these approximate 
values are appreciably in error, and the exact values should 
be used. The expected value of the i th largest modulus of 

t The expression given for this quantity in Abrahams & 
Keve (1971) is misprinted as (2i+1)/2j; it should have read 
(2i-1)/2j,  where i=  1 refers to the smallest observation. For 
consistency with the full-normal case notation, we use the 
expression above, where i=  1 refers to the largest observation. 


